Thermus oshimai JL-2 and T. thermophilus JL-18 genome analysis illuminates pathways for carbon, nitrogen, and sulfur cycling
نویسندگان
چکیده
The complete genomes of Thermus oshimai JL-2 and T. thermophilus JL-18 each consist of a circular chromosome, 2.07 Mb and 1.9 Mb, respectively, and two plasmids ranging from 0.27 Mb to 57.2 kb. Comparison of the T. thermophilus JL-18 chromosome with those from other strains of T. thermophilus revealed a high degree of synteny, whereas the megaplasmids from the same strains were highly plastic. The T. oshimai JL-2 chromosome and megaplasmids shared little or no synteny with other sequenced Thermus strains. Phylogenomic analyses using a concatenated set of conserved proteins confirmed the phylogenetic and taxonomic assignments based on 16S rRNA phylogenetics. Both chromosomes encode a complete glycolysis, tricarboxylic acid (TCA) cycle, and pentose phosphate pathway plus glucosidases, glycosidases, proteases, and peptidases, highlighting highly versatile heterotrophic capabilities. Megaplasmids of both strains contained a gene cluster encoding enzymes predicted to catalyze the sequential reduction of nitrate to nitrous oxide; however, the nitrous oxide reductase required for the terminal step in denitrification was absent, consistent with their incomplete denitrification phenotypes. A sox gene cluster was identified in both chromosomes, suggesting a mode of chemolithotrophy. In addition, nrf and psr gene clusters in T. oshmai JL-2 suggest respiratory nitrite ammonification and polysulfide reduction as possible modes of anaerobic respiration.
منابع مشابه
Whole Genome Sequencing of Thermus oshimai JL-2 and Thermus thermophilus JL-18, Incomplete Denitrifiers from the United States Great Basin
The strains Thermus oshimai JL-2 and Thermus thermophilus JL-18 each have a circular chromosome, 2.07 Mb and 1.9 Mb in size, respectively, and each has two plasmids ranging from 0.27 Mb to 57.2 kb. The megaplasmid of each strain contains a gene cluster for the reduction of nitrate to nitrous oxide, consistent with their incomplete denitrification phenotypes.
متن کاملPotential role of Thermus thermophilus and T. oshimai in high rates of nitrous oxide (N2O) production in ∼80 °C hot springs in the US Great Basin.
Ambient nitrous oxide (N(2)O) emissions from Great Boiling Spring (GBS) in the US Great Basin depended on temperature, with the highest flux, 67.8 ± 2.6 μmol N(2)O-N m(-2) day(-1) , occurring in the large source pool at 82 °C. This rate of N(2)O production contrasted with negligible production from nearby soils and was similar to rates from soils and sediments impacted with agricultural fertili...
متن کاملStructural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus.
The structures of two major phosphoglycolipids from the thermophilic bacteria Thermus oshimai NTU-063, Thermus thermophilus NTU-077, Meiothermus ruber NTU-124, and Meiothermus taiwanensis NTU-220 were determined using spectroscopic and chemical analyses to be 2'-O-(1,2-diacyl-sn-glycero-3-phospho) -3'-O-(alpha-N-acetyl-glucosaminyl)-N-glyceroyl alkylamine [PGL1 (1)] and the novel structure 2'-O...
متن کاملComplete genome sequence of the thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus TK-6.
Hydrogenobacter thermophilus is a thermophilic, obligately chemolithoautotrophic and aerobic hydrogen-oxidizing bacterium. It is unique in its ability to fix carbon dioxide via the reductive tricarboxylic acid cycle under aerobic conditions. It utilizes molecular hydrogen, elemental sulfur, or thiosulfate as the sole energy source. Here, we report the complete genome sequence of H. thermophilus...
متن کاملGenome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont
Bathymodiolus thermophilus, a mytilid mussel inhabiting the deep-sea hydrothermal vents of the East Pacific Rise, lives in symbiosis with chemosynthetic Gammaproteobacteria within its gills. The intracellular symbiont population synthesizes nutrients for the bivalve host using the reduced sulfur compounds emanating from the vents as energy source. As the symbiont is uncultured, comprehensive an...
متن کامل